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1. Introduction

In recent years, the literature on `̀ endogenous growth'' has increased quite rapidly, and
we now have a variety of models that attempt to explain the observable patterns of
growth over time and across countries.

Most of these models use as the analytic framework some version of a two-sector
model in which one sector produces a good that can be used for consumption or for
investment in physical capital, and another sector produces new human capital or
knowledge which constitutes the endogenous technical change that promotes growth in
per capita incomes. The characterization of an optimal or equilibrium steady state in
these models is fairly clear by this stage. However, it would not be unfair to say that
the study of the dynamics of equilibrium or optimal programmes off the steady state
is still at a preliminary stage.

It is worth mentioning that some of the leading contributors to this literature have
recognized the importance of understanding the `̀ transition dynamics'' of these growth
models. In his evaluation of the growth paths generated by the Solow growth model
(interpreted as representative agent perfect-foresight equilibria), Lucas (1988, p. 11)
comments: `̀ What of economies that begin off the balanced path Ð surely the normal
case? Cass showed Ð and this is exactly why the balanced path is interesting to us Ð
that for any initial capital K(0) . 0, the optimal capital-consumption path (K(t), c(t))
will converge to the balanced path asymptotically. That is, the balanced path will be a
good approximation to any actual path `most' of the time.'' Romer (1990, p. S97), in

� A version of this paper was presented at the Conference on `̀ Endogenous Growth and Nonlinear
Economic Dynamics'' in Meiji-Gakuin University, Tokyo, in November 1993. Comments received from
participants at the Conference, especially Kazuo Mino, the discussant of the paper, are gratefully
acknowledged. I would also like to thank John Hartwick, Debraj Ray and Manuel Santos for helpful
conversations.

± 85 ±
# Japanese Economic Association 1998.

The Japanese Economic Review
Vol. 49, No. 2, June 1998

Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK.



examining the welfare properties of his model of endogenous technological change (in
which growth is driven by the accumulation of knowledge in the disembodied form of
new designs), comments: `̀ Within the con®nes of the model, the social optimum can be
achieved by subsidizing the accumulation of A. Demonstrating this result rigorously
starting from arbitrary initial conditions forces the analysis to depart from consideration
of balanced growth paths. Any intervention designed to move an economy from one
balanced growth path to another must consider the transition dynamics along the way,
and an explicit analysis of these dynamics is beyond the scope of this paper.''

However, neither Lucas (1988) nor Romer (1990) provides an analysis of the
transition dynamics in their respective models.1) The reason appears to be that the
dynamics of the models proposed by them involve two state variables (physical capital
and human capital or knowledge) in an essential way. That is, one cannot `̀ reduce''
the dynamic analysis to one that involves the law of motion of a single state variable.
The analyses of such dynamical systems are inherently more dif®cult,2) as is clear
from the literature on the theory of optimal intertemporal allocation with
heterogeneous capital goods.3)

The purpose of this paper is to provide a systematic analysis of a model of
economic development proposed by Lucas (1988), in which technical change is
endogenously produced through the process of human capital accumulation. House-
holds can allocate their available labour in each period between a physical good sector
and a human capital sector. In the former sector, a consumption=physical capital good
is produced by using inputs of capital and labour (in ef®ciency units), so that the
accumulation of human capital in the latter sector provides a labour-augmenting
technical progress in the production of the physical good (by increasing the ef®ciency
units of labour). However, in addition to this, the average level of human capital (for
the economy) provides a positive externality in the production of the former sector.

Diminishing returns are absent in the technology of human capital accumulation,
which allows sustained growth of output per worker in this model. The presence of
the externality in the production of the physical good implies that an optimal
programme (obtained by solving a planning problem in which the externality is
internalized) differs from an equilibrium programme (which is obtained in a
decentralized setting, when beliefs of agents regarding the externality are ful®lled).
The focus of this paper is on equilibrium programmes.

We establish the existence of equilibrium programmes from arbitrary initial
conditions by applying a ®xed-point argument in the space of all sequences (the set
of beliefs being a subset of this space). After noting some preliminary properties of
equilibrium programmes (relating to patterns of human capital accumulation and the
Ramsey±Euler equations), we establish the existence of an equilibrium steady-state

1) `̀ The dynamics of this system are not as well understood as those of the one-good model . . .'' (Lucas
1988, p. 25). `̀ The treatment of behavior off balanced paths is largely conjecture . . .'' (Lucas 1988, p.
20). `̀ By focusing only on balanced growth paths, the analysis neglects the transient dynamics that
arise when the economy starts from a ratio of K to A that differs from the ratio that is maintained
along the balanced growth path'' (Romer 1990, p. S90).

2) This observation is in agreement with the following evaluation of Mulligan and Sala-i-Martin (1993,
p. 740): `̀ Due to its analytical dif®culty, however, these transitional dynamics are always left
unexplained.''

3) See McKenzie (1986) for a comprehensive survey of this literature.
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programme. The principal results of the paper are concerned with the dynamic
behaviour of equilibrium programmes off the steady state. We show that the asymptotic
growth rates of consumption, physical and human capital on any (interior) equilibrium
programme will equal the growth rates of the respective variables along the equilibrium
steady state.

We now relate our results to those available in the literature.4) The dynamic analysis
of a model, which is the same as that studied by Lucas (1988) except that the production
externality is absent, is by now well understood. Uzawa (1965), CaballeÂ and Santos
(1993) (in a continuous-time framework) and Mitra and Sihag (1993) (in a discrete-time
framework) provide complete analyses of transition dynamics in different versions of
this model. (Uzawa assumed that the utility function of the (representative) agent was
linear; CaballeÂ and Santos and Mitra and Sihag worked with strictly concave utility
functions.5)) There are two aspects in which our present exercise can be distinguished
from the above literature. First, in the absence of the externality, the notions of
`̀ equilibrium'' and `̀ optimum'' coincide, and one can draw on the rich literature on
optimal growth (the planning problem) to analyse the decentralized equilibrium solution
(and, indeed, all three of the above contributions do precisely this). Second (at least for
interior solutions), the dynamic analysis of the two state variables (physical and human
capital) can be `̀ reduced'' to the analysis of a single variable (the ratio of labour (in
ef®ciency units) devoted to physical good production to the physical capital stock).

The `̀ transition dynamics'' in models in which some production externality is
present have not been investigated in the same way. Chamley (1993) and Benhabib
and Farmer (1994) consider alternate versions of two-sector models with externalities
that differ from those considered by Lucas. However, their off-the-steady-state
dynamic analyses are con®ned to obtaining local results which hold in the
neighbourhood of the steady state. Mulligan and Sala-i-Martin (1993) consider a
general two-sector model with externalities which includes the model of Lucas as a
special case. However, their study of the transition dynamics is con®ned to models
without externalities.6) Furthermore, their paper provides only numerical simulations
of the dynamics of such of a model: it does not offer analytical results.7)

4) A question in this literature that we do not address is the non-uniqueness, and more generally the
`̀ indeterminacy'', of equilibrium programmes in models with dynamic externalities. This important
issue has been the focus of a number of papers in recent years; see especially Benhabib and Farmer
(1994), Boldrin and Rustichini (1994) and Benhabib and Perli (1994). Speci®cally, Xie (1994) uses
special pairs of the utility and production functions to examine the indeterminacy problem in the Lucas
model.

5) Mino (1996) and Bond et al. (1996) examine a more general model, but neither paper offers a
complete global dynamic analysis.

6) It is, perhaps, worth noting that (although they exclude externalities in their simulation studies)
Mulligan and Sala-i-Martin (1993) consider the case where, in addition to human capital and labour,
physical capital may also be an input in the production of human capital, a situation not allowed by
Lucas (1988). However, this case (without externalities) is given a de®nitive analytical treatment in
CaballeÂ and Santos (1993).

7) Mulligan and Sala-i-Martin (1993, p. 759) note in their `̀ Interesting Result 6'' that `̀ The Uzawa
(1965)±Lucas (1988) model of endogenous growth is globally saddle-path stable.'' This is however,
immediately followed by footnote 24: `̀ This result comes from extensive experimentation with all kinds
of parameters and is not based on a formal proof. Strictly speaking, interesting result 6 should say, `We
have not been able to ®nd parameters for which the Uzawa±Lucas model was not globally saddle-path
stable.'''
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These contributions use continuous-time formulations in contrast to our discrete-
time version. The literature that has developed over the past ®fteen years in the theory
of optimal intertemporal allocation (relying on the mathematical contributions on
`̀ chaotic dynamics'') has taught us that discrete-time models can behave quite
differently from their continuous-time counterparts. Thus, in developing our results,
we have not relied on the continuous-time literature, whatever there is of it. The
analytical techinques that we have found most useful for our study are those
developed by Brock and Gale (1969) to examine the nature of optimal growth paths in
a model of exogenous technical change. We feel that the methods used in our paper
(based on those of Brock and Gale) might be useful in studying the transition
dynamics in other two-sector models of endogenous technical change.

2. The Model

Consider an in®nitely lived representative agent with initial stocks of physical capital
(K) and human capital (A), and one unit of labour in each period. The labour is
allocated between the physical goods production sector (h) and the human capital
production sector (1ÿ h).

Production of physical goods is determined by a production function
F : R3

� ! R�, the arguments in the production function being the amounts of
physical capital (K), labour in ef®ciency units (L) and the average (social) stock of
human capital (E). For the representative agent, this last input is a production
externality. Human capital production is determined by a linear production function
with õ. 0, the constant (average and marginal) productivity of labour in `̀ ef®ciency''
units. We will assume that there is no depreciation of either type of capital.

In this model, human capital creates labour-augmenting technical progress in the
production of physical goods. This technical change is endogenously produced by
allocating labour to the production of human capital.

Consumption of the good produced in the physical goods sector yields felicity to
the agent as determined by a welfare function, w : R� ! R�. The agent discounts
future welfare by the discount factor 0 , ä, 1 and is interested in obtaining the
maximum discounted sum of welfares from his given initial stocks, subject to
feasibility constraints.

In formulating his maximization problem, the representative agent does not know
the magnitude of the production externality; that is, the average stock of human
capital in the economy at each date. Instead, he has `̀ beliefs'' about this magnitude,
and he formulates his optimization problem based on these beliefs. Thereby an actual
pattern of average human capital accumulation is generated for the economy. An
equilibrium is a situation where the beliefs turn out to be correct.

We now proceed to develop the notion of an equilibrium more formally.
A belief is any sequence fEtg10 satisfying Et . 0 for t > 0. We interpret Et to be a

representative agent's belief of what the average stock of human capital for the
economy will be at time t.

Given any initial stocks of physical and human capital (K, A) > 0, and a belief
fEtg10 , a plan from (K, A) is a sequence fK t, At, ht�1g10 satisfying

(K0, A0) � (K, A); 0 < ht�1 < 1 for t > 0
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0 < K t�1 < F(K t, At ht�1, Et)� K t for t > 0

At�1 � At � õAt(1ÿ ht�1) for t > 0:

We associate with such a plan a consumption sequence fCt�1g10 , de®ned by

Ct�1 � F(K t, At ht�1, Et)� K t ÿ K t�1 for t > 0:

Given (K, A) > 0, and a belief fÊ tg10 , an optimal plan from (K, A) is a plan
fK̂ t, Ât, ĥ t�1g10 (with the belief fÊtg10 ) such that, for every plan fK t, At, ht�1g10
from (K, A), with the same belief fÊ tg10 ,X1

0

ä tw(F(K t, At ht�1, Ê t)� K t ÿ K t�1) <
X1

0

ä tw(F(K̂ t, Ât ĥ t�1, Êt)� K̂ t ÿ K̂ t�1):

An equilibrium programme from (K, A) > 0 is a sequence fK̂ t, Ât, ĥ t�1, Ê tg10 such
that

(i) fÊtg10 is a belief;
(ii) fK̂ t, Ât, ĥ t�1g10 is a plan from (K, A), given the belief fÊ tg10 ;

(iii) if fK t, At, ht�1g10 is any plan from (K, A), given the belief fÊtg10 , thenX1
0

ä tw(F(K t, At, ht�1, Ê t)� K t ÿ K t�1)

<
X1

0

ä tw(F(K̂ t, Ât, ĥ t�1, Êt)� K̂ t ÿ K̂ t�1);

(iv) Êt � Ât for t > 0.

In words, an equilibrium programme is a belief and a plan (given the belief) such
that (a) it is an optimal plan given the belief, and (b) the belief is correct.

Thus, if fK̂ t, Ât, ĥ t�1, Êtg10 is an equilibrium programme from (K, A) > 0, then
fK̂ t, Ât, ĥ t�1g10 solves the following maximization problem:

Max
X1

0

ä tw(F(K t, At ht�1, Ât)� K t ÿ K t�1)

subject to (K0, A0) � (K, A), 0 < ht�1 < 1, for t > 0

0 < K t�1 < F(K t, At ht�1, Ât)� K t ÿ K t�1 for t > 0

At�1 � At � õAt(1ÿ ht�1) for t > 0:

That is, if fÂtg10 itself is the belief, then fK̂ t, Ât, ĥ t�1g10 is an optimal plan among all
plans with that belief (from the same initial stocks). Note that, if fK̂ t, Ât, ĥ t�1, Êtg10
is an equilibrium programme from (K, A), then the equilibrium programme can, in fact,
be described by the sequence fK̂ t, Ât, ĥ t�1g10 . We shall use this convention in the rest
of the paper.

The following assumptions on F and w are maintained throughout the paper:

(A) F(K , L, E) � KâL1ÿâEã for (K, L, E) 2 R3
�, where 0 , â, 1 and ã. 0

(B) w(C) � C1ÿó =(1ÿ ó ) for C 2 R�, where 0 , ó , 1:
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The Cobb±Douglas production function and the isoelastic welfare function have ®gured
prominently in the literature on growth with endogenous technical change (see e.g.
Lucas 1988; Romer 1990; Rebelo 1991). More general forms of welfare and production
functions are allowed in CaballeÂ and Santos (1993) and in Mitra and Sihag (1993).
Uzawa (1965) also allows a more general form of the production function but uses a
linear welfare function.

Remark. Notice that in Assumption (B) we restrict ó to (0, 1), unlike much of the
literature in this area, which also allows for ó . 1. For ó . 1 (as well as for
w(C) � lnC, the limiting case of (B) as ó ! 1), the welfare function is not de®ned at
zero. A rigorous treatment of this case leads to considerable additional analytical work
in establishing the existence results, starting with the result on existence of an optimal
plan given a belief (Proposition 1). While such a treatment is possible (following, for
instance, the approach of Ekeland and Scheinkman 1986), we felt justi®ed in restricting
our attention to the case in which ó is in (0, 1) for the gain in analytical simplicity, and
because the focus of this paper is the nature of transition dynamics, and not the
existence of optimal or equilibrium plans.

3. The Existence of an Equilibrium

It can be shown that there exists an equilibrium from every speci®cation of initial
stocks (K, A)� 0. This is established by using the Tychonoff ®xed-point theorem in
the space of all sequences. We indicate below the main steps in this argument.

An elementary observation, following from the de®nition of an equilibrium, is that,
if fK t, At, ht�1g10 is an equilibrium programme from (K, A), then

Atÿ1 < At < Atÿ1(1� õ), A0 � A:

Thus, in proving the existence of an equilibrium programme, the beliefs fEtg10 that we
should be concerned with are those that satisfy

Etÿ1 < Et < Etÿ1(1� õ), E0 � A: (1)

Given this restriction on beliefs, a convenient boundedness property of plans (given the
beliefs) can be established.

To this end, de®ne ì � (1ÿ â� ã)=(1ÿ â), è � (1� õ)ì. (Note that ì. 1, è.
(1� õ):)

Lemma 1: Given any (K, A) > 0 and any belief fEtg10 satisfying (1), there is B . 0
such that, if fK t, At, ht�1g10 is a plan from (K, A), then

K t, Ct < Bè t for t > 1:

The next step is to obtain an optimal plan from every initial stock con®guration
(K, A), and belief fEtg10 satisfying (1). For this, we need a familiar condition
involving the discount factor, ä, the maximum growth factor, è, and the elasticity of
the welfare function, (1ÿ ó ).
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Proposition 1: Given any (K, A) > 0 and any belief fEtg10 satisfying (1), there is an
optimal plan from (K, A), given the belief fEtg10 , if

(C) äè1ÿó , 1:

Furthermore, an optimal plan is unique when (K, A)� 0.

For the rest of our analysis, we maintain (C) as an assumption.
The ®nal step is to ®nd a belief that is correct (self-ful®lling). Let Ù be the space

of sequences fù tg10 with ù t 2 R for t > 0. We can ®nd a locally convex topology
for Ù which is equivalent to the topology of co-ordinate wise convergence. Let
(K, A)� 0 be given and let F be the set of sequences fEtg10 satisfying (1). Then F
is a non-empty, convex and compact subset of Ù. Given any element of F, we obtain
a unique optimal plan fK̂ t, Ât, ĥ t�1g10 by Proposition 1. One can show that optimal
plans depend continuously on beliefs. Using a projection map, we obtain the sequence
fÂtg10 associated with the sequence fEtg10 in F. Since the projection map is
continuous, the mapping of fEtg10 to fÂtg10 is also continuous. Further, by feasibility
of fK̂ t, Ât, ĥ t�1g10 from (K, A), fÂtg10 is also in F. Thus, applying the Tychonoff
®xed-point theorem, there is fEtg10 in F such that the optimal plan fK̂ t, Ât, ĥ t�1g10
from (K, A) satis®es Ât � Et for t > 0. It is straightforward to verify from this that
fK̂ t, Ât, ĥ t�1g10 is an equilibrium programme from (K, A)� 0.

Theorem 1: Given any (K, A)� 0, there exists an equilibrium programme
fK̂ t, Ât, ĥ t�1g1.

4. Basic Properties of Equilibrium Programmes

4.1 Accumulation of physical capital

If fK t, At, ht�1g10 is an equilibrium programme from (K, A)� 0, then clearly Ct . 0
for t > 1 (since w9(C)!1 as C ! 0). This implies that K t . 0 for t > 0. Also, since
At�1 > At and A0 . 0, we have At . 0 for t > 0.

The allocation of labour to the physical good sector (ht�1) must clearly be positive
for a subsequence of periods. Further, if it were not positive for all periods, we could
®nd a period ô such that hô�1 � 0 and hô�2 . 0. However, now we can produce a
small perturbation in periods ô� 1, ô� 2 (increasing the allocation of labour to the
physical good sector in period ô� 1 and reducing it in period ô� 2, leaving other
periods unchanged) which will be better for the agent than the original plan, given the
belief fAtg10 . Thus, we can conclude that ht�1 . 0 for t > 0.

On the basis of the above information, we can obtain a Ramsey±Euler equation
relating the intertemporal marginal rate of substitution to the marginal product of
capital in the physical good sector. This represents the standard trade-off of more
consumption today versus an accumulation of capital today and more consumption
tomorrow. All of the above discussion can be summarized in the following result.

Proposition 2: If fK t, At, ht�1g10 is an equilibrium programme from (K, A)� 0, then

(i) (Ct�1, K t, At, ht�1)� 0 for t > 0;
(ii) w9(Ct)=äw9(Ct�1) � [1� D1 F(K t, At ht�1, At)] for t > 1:
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4.2 Accumulation of human capital

The pattern of human capital accumulation is somewhat harder to characterize.
Assuming a `̀ ä-productivity'' condition in the human capital sector, we can show that, in
equilibrium, human capital must be accumulated at least for a subsequence of periods.

We state this ä-productivity condition as follows:

ä(1� õ) . 1

and we maintain it in the rest of our analysis.

Proposition 3: If fK t, At, ht�1g10 is an equilibrium programme from (K, A)� 0, then
there is a subsequence ftsg1s�1 of periods such that, if ô � ts, then

Aô�1 . Aô:

It appears that there is no reason to rule out ht�1 � 1 for some period t
(At�1 � At), a period of no human capital accumulation in equilibrium. We will,
however, focus on equilibria in which this phenomenon is ruled out.8) An equilibrium
programme will be called interior if

ht�1 , 1 for t > 0: (2)

For interior equilibria, one can derive another Ramsey±Euler equation arising from the
trade-off of more consumption today (by less human capital accumulation today) versus
more consumption tomorrow (by less human capital accumulation tomorrow).

Proposition 4: If fK t, At, ht�1g10 is an interior equilibrium programme from
(K, A)� 0, then

w9(Ct)=äw9(Ct�1) �
(1� õ)[D2 F(K t, At ht�1, At)=D2 F(K tÿ1, Atÿ1 ht, Atÿ1)] for t > 1:

4.3 The Ramsey±Euler equations

We can combine the Ramsey±Euler equations obtained in Propositions 2 and 4 in a
more convenient form which will help us in our analysis in the following sections. For
this purpose, de®ne

xt � A
ì
t for t > 0

Proposition 5: If fK t, At, ht�1g10 is an interior equilibrium programme from
(K, A)� 0, then

(i) (1=ä)(Ct�1=Ct)
ó � [1� â(ht�1xt=K t)

1ÿâ] for t > 1

(ii) (1=ä)(Ct�1=Ct)
ó � (1� õ)

(htxtÿ1=K tÿ1)â

(ht�1xt=Kt)â
(At=Atÿ1)ìÿ1 for t > 1

8) In a framework without externalities, Mitra and Sihag (1993) show how the more general case
(allowing for ht�1 � 1 for some periods) can be handled. Our assessment is that those methods should
be applicable in the present context as well.
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5. An Equilibrium Steady State

In this section we establish the existence of an equilibrium programme which also
happens to be a steady state, in the sense that consumption, physical capital and human
capital grow at constant rates over time.

Formally, an equilibrium programme fK t, At, ht�1g from (K, A) > 0 is an
equilibrium steady state programme from (K, A) if there are numbers gC , g K , g A

such that

K t�1 � g K K t for t > 0,

At�1 � g A At for t > 0,

Ct�1 � gC Ct for t > 1:

In establishing our existence result, it helps to know the growth rates of physical
and human capital and the composition of these capital stocks that would prevail in an
equilibrium steady state.

Note that, for an equilibrium steady-state programme from (K, A)� 0, we must
have g A , (1� õ) by Proposition 2 and g A . 1 by Proposition 3. Thus, an
equilibrium steady-state programme fKt, At, ht�1g10 from (K, A)� 0 is necessarily
interior, with ht�1 � 1ÿ [(g A ÿ 1)=õ] for t > 0. Using this in the ®rst Ramsey±Euler
equation of Proposition 5, we can infer that (xt=K t) must be constant over time and so
g
ì
A � g K , which implies g K . gA.
Using the basic feasibility equation Ct�1 � K

â
t (ht�1 At)

1ÿâA
ã
t � K t ÿ K t�1, we

obtain

(Ct�1=K t)� (g K ÿ 1) � h
â
t�1(xt=Kt)

1ÿâ:

Thus, (Ct�1=K t) is also a constant over time, so that gC � gK . We call this common
growth rate G, and denote g A by g. Then G � gì, as we have noted before. Also, using
the second Ramsey±Euler equation of Proposition 5, we can infer that

góC � g
ìÿ1
A ä(1� õ):

Thus, combining the two pieces of information, we get

gìó � Gó � gìÿ1ä(1� õ):

Denoting [1ÿ ì(1ÿ ó )] by r, we have 0 ,r, 1 by assumption (C), and

g � [ä(1� õ)]1=r; G � [ä(1� õ)]ì=r: (3)

The above discussion can be summarized in the following result.

Proposition 6: If fK t, At, ht�1g10 is an equilibrium steady-state programme from
(K, A)� 0, then, de®ning g and G as in (3), we have

g A � g, gK � gC � G;

ht�1 � 1ÿ [(g ÿ 1)=õ] for t > 0;

(A
ì
t =K t) � f[(1=ä)Gó ÿ 1]=âg1=(1ÿâ)

f1ÿ [(g ÿ 1)=õ]g for t > 0:
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Armed with this result, we can proceed to state the existence result of this section
as follows.

Theorem 2: If (K, A)� 0, g and G are de®ned as in (3) and

(Aì=K) � f[(1=ä)Gó ÿ 1]=âg1=(1ÿâ)

f1ÿ [(g ÿ 1)=õ]g ,

then the sequence fK t, At, ht�1g10 de®ned by

(K0, A0) � (K, A);

ht�1 � 1ÿ [(g ÿ 1)=õ] for t > 0;

At�1 � At � õAt(1ÿ ht�1) for t > 0;

K t�1 � GK t for t > 0:

is an equilibrium steady-state programme from (K, A).

6. Equilibrium Dynamics off the Steady State

In examining the dynamics of equilibrium programmes, we focus on the behaviour of
the variable

zt � (ht�1 A
ì
t =K t) for t > 0: (4)

This is precisely the labour (in ef®ciency units)-to-capital ratio in the absence of any
externality (that is, with ã � 0 (so that ì � 1), as is the case in the models examined by
Uzawa 1965, CaballeÂ and Santos 1993 and Mitra and Sihag 1993). With the externality
present, ì. 1, and so zt may be considered to be an `̀ augmented'' ef®ciency labour-to-
capital ratio, the augmentation re¯ecting the effect on production of the physical good
of the average (social) stock of human capital, which is taken as given by the
representative agent in his decision-making.

If we concentrate on interior equilibrium programmes, then combining the two
Ramsey±Euler equations of Proposition 5 yields the basic difference equation

z
â
t � âzt � z

â
tÿ1(At=Atÿ1)ìÿ1(1� õ): (5)

This would be an entirely straightforward difference equation to deal with (in terms of
describing the qualitative properties of zt over time) were it not for the externality
factor, which makes its presence felt (apart from the de®nition of the zt factor itself) in
the term (At=Atÿ1)ìÿ1. However, noting that 1 < (At=Atÿ1) < (1� õ) for all t > 1, we
can still say quite a bit about the behaviour of zt over time, by following the methods
used to study one-dimensional stochastic (Markov) processes. That is, although
(At=Atÿ1) is actually determined simultaneously with zt and is a non-stochastic
variable, we can say something about the behaviour of zt from (5) without knowing
anything speci®c about the actual value of (At=Atÿ1), except that it lies in the interval
[1, (1� õ)].

It can be shown that there is an interval I � [z, z], with 0 , z , z ,1, which
represents the `̀ absorbing states'' of the system, in the sense that, if zt 2 I for some t,
then zt 2 I thereafter. Furthermore, if z0 . 0 is not in I initially, then there is some
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®nite date, t, at which zt 2 I . Thus, the complement of I (in R��) represents the
`̀ transitory states'' of the system, and eventually the dynamics of the variable zt are
entirely con®ned to the interval I. This discussion is summarized in the following
result (see also Figure 1).

Proposition 7: There exist numbers 0 , z , z ,1, such that, if fK t, At, ht�1g10 is an
interior equilibrium programme from (K, A)� 0, and I � [z, z], then

(i) zt 2 I implies zt�1 2 I for t > 0;
(ii) zt 2 I for some t > 0:

Exploiting this result, we can next examine the behaviour of the variable
yt � (xt=K t) � (A

ì
t =K t). Using Proposition 7, and ht�1 < 1 for t > 0, we clearly

have the sequence fytg10 bounded below by a positive number. It is somewhat harder
to establish that the sequence is bounded above. The key idea here is that, if yt

became unbounded for a subsequence of periods, then by Proposition 7, ht�1 goes to
zero for that subsequence, and the agent can improve his discounted sum of welfares
by switching to a regime (suf®ciently far along the given subsequence) in which
schooling is stopped altogether (for the rest of the future).

In order to establish this, a preliminary result is useful. This simply states that, for
an interior equilibrium, the propensity to consume cannot approach unity.

Lemma 2: If fK t, At, ht�1g10 is an interior equilibrium programme from (K, A)� 0,
then

lim sup
t!1

(Ct=Yt) , 1

when Yt � F(K tÿ1, Atÿ1 ht, Atÿ1)� K tÿ1 for t > 1.

zt11 φ (x)

φ (x)

z î* ς* z zt

FIGURE 1.
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Proposition 8: If fK t, At, ht�1g10 is an interior equilibrium programme from
(K, A)� 0, then

0 , lim inf
t!1 yt < lim sup

t!1
yt ,1:

Turning our attention next to the variable v t � (Ct�1=K t), we can again use
Proposition 7 to conclude that the sequence fv tg10 is bounded above. It is more
dif®cult to establish that the sequence is bounded below by a positive number. The
idea we exploit here is that, if v t is close to zero for some t, then in fact the ®rst
Ramsey±Euler equation (and feasibility conditions) force the sequence fv tg10 to
converge to zero at a geometric rate. However, this phenomenon can be shown to be
`̀ inef®cient'' and hence non-optimal for the representative agent.

The following lemma is useful in proving this result.

Lemma 3: If fK t, At, ht�1g10 is an interior equilibrium programme from (K, A)� 0,
and lim inf

t!1 (Ct=K t) � 0, then X1
t�1

(Ct=K t) ,1:

Proposition 9: If fK t, At, ht�1g10 is an interior equilibrium programme from
(K, A)� 0, then

0 , lim inf
t!1 v t < lim sup

t!1
v t ,1:

Combining the results of the previous two propositions, we can establish that
asymptotic growth rates of At, K t, Ct are well de®ned and equal to the growth rates
of At, Kt, Ct (respectively) of the equilibrium steady-state programme of Section 5.9)

Theorem 3: If fK t, At, ht�1g10 is an interior equilibrium programme from
(K, A)� 0, then

(i) lim
t!1(At)

1= t � g

(ii) lim
t!1(K t)

1= t � lim
t!1(Ct)

1= t � G,

where g and G are de®ned by (3).

Appendix: Proofs

Proof of Lemma 1

Given (K, A) > 0 and the belief fEtg10 satisfying (1), we de®ne

k̂ � [è 0=(1ÿ è9)]1=(1ÿâ),

9) What we establish is weaker than the conjecture of Lucas (1988). If one could show that (At=g t) and
(K t=Gt) converge to positive numbers as t !1, then his conjecture would be established. Whether
this stronger form of convergence holds remains an open question.
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where è9 � (1=è), è 0 � è9A(1ÿâ�ã) and

B � max(K, k̂):

Now, for any plan fK t, At, ht�1g10 from (K, A), given the belief fEtg10 , we have

K t�1 < E
ã
t K

â
t A

1ÿâ
t h

1ÿâ
t�1 � K t,

so that, if we divide through by è t�1, and denote (K t=è t) by k t for t > 0,

k t�1 < è 0k
â
t � è9k t:

It now readily follows that

k t < B for all t > 0,

so that K t < Bè t for t > 0, and Ct < Bè t for t > 1. j

Proof of Proposition 1

Given condition (C), if we de®ne

bt�1 � Bè t�1 for t > 0

(where B is given by Lemma 1), we have

w(bt�1) � B9(è1ÿó ) t�1 for t > 0,

where B9 � B1ÿó =(1ÿ ó ). By Lemma 1, we also have, for every plan fK t, At, ht�1g10
from (K, A) > 0 (given a belief fEtg10 satisfying (1)),

w(Ct�1) < w(bt�1) for t > 0:

Thus, we have

ä t[w(bt�1)ÿ w(Ct�1)] > 0 for t > 0

and X1
0

ä t[w(bt�1)ÿ w(Ct�1)] ,1:

Then, by Brock and Gale (1969, lemma 2, p. 236), there is an optimal plan from
(K, A), given the belief fEtg10 . Uniqueness follows from the facts that w is strictly
concave in C, F is concave in K and L (given E) and strictly concave in L (given K
and E). j

Proof of Theorem 1

Let Ù � ffù tg10 : ù t 2 R for t > 0g. For ù 2 Ù, we can de®ne e n(ù) �
max(jù0j, jù1j, . . ., jùnj) for n > 0. For each n, e n is a semi-norm on Ù. The formula

d(ù, ~ù) �
X1
n�0

2ÿnfe n(~ùÿ ù)=[1� e n(~ùÿ ù)]g

de®nes a (complete) metric on Ù. Thus, Ù is a locally convex (complete) metric space.
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(Note that convergence in terms of the metric d is equivalent to co-ordinate wise
convergence.)

Let (K, A)� 0 be given. Let F be the set of sequences fEtg10 satisfying (1). Then,
it can be checked that F is a non-empty, convex and compact subset of Ù. (Checking
the compactness of F is equivalent to checking the sequential compactness, since Ù is
a metric space; and sequential compactness follows by using the standard Cantor
diagonal argument.)

Given any element fEtg10 in F, we obtain a unique optimal plan fK t, At, ht�1g10
by applying Proposition 1. Let ø: F ! Ù3 be the map that associates the optimal
plan fKt, At, ht�1g10 which corresponds to the element fEtg10 in F. We want to show
that ø is a continuous map. (Note that for elements (ù1, ù2, ù3) and (~ù1, ~ù2, ~ù3) in
Ù3, we can de®ne the metric d((ù1, ù2, ù3), (~ù1, ~ù2, ~ù3)) � max(d(ù1, ~ù1),
d(ù2, ~ù2), d(ù3, ~ù3)).)

Let fEn
t g10 be a sequence of elements in F (n � 1, 2, 3, . . .) converging (in terms

of the metric d) to the element fEtg10 . Let fK n
t , An

t , hn
t�1g10 be the sequence of

elements in Ù3 (n � 1, 2, 3, . . .) de®ned by the map ø. Finally, let
fK t, At, ht�1g10 � ø(fEtg10 ). We want to show that d(fK n

t , An
t , hn

t�1g10 , fK t,
At, ht�1g10 )! 0 as n!1. If this did not hold, then we could ®nd å. 0 and a
subsequence n9 (of n) such that d(fK n9

t , An9
t , hn9

t�1g10 , fK t, At, ht�1g10 ) > å for all n9.
By using Lemma 1 and the Cantor diagonal process, we can obtain a convergent
subsequence of n9 (retain notation) converging to fK t, At, ht�1g10 . Continuity of F
ensures that fK t, At, ht�1g10 is a plan from (K, A) given the belief fEtg10 .
Continuity of d ensures that d(fK t, At, ht�1g10 , fK t, At, ht�1g10 ) > å. Therefore, the
uniqueness of an optimal plan from (K, A), given the belief fEtg10 , implies the
existence of å. 0, such thatX1

0

ä tw(Ct�1) >
X1

0

ä tw(Ct�1)� å: (�)

Using Lemma 1 and condition (C), one can ®nd T such that, for every belief
fE9tg10 satisfying (1), and every plan fK9t, A9t, h9t�1g10 from (K, A), given the belief,
we have X1

T

ä tw(C9t�1) , (å=5):

Then, we can choose N1 large enough so that for n9 > N1 we haveXT

0

ä tw(Ct�1) >
XT

0

ä tw(C n9
t�1)ÿ (å=5):

This implies, for n9 > N1,XT

0

ä tw(Ct�1)� å >
XT

0

ä tw(C n9
t�1)� 3(å=5): (�)

Since fK t, At, ht�1g10 is the optimal plan from (K, A), given the belief fEtg10 , we
have Ct�1 . 0 for t > 0 (by using the fact that w9(C)!1 as C ! 0). Then, there is
N2 > N1 such that, for all n9 > N2, the sequence f ~K n9

t , ~An9
t , ~hn9

t�1g10 , de®ned by
( ~K n9

t , ~An9
t , ~hn9

t�1) � (K t, At, ht�1) for 0 < t < T ÿ 1, ( ~K n9
t , ~An9

t , ~hn9
t�1) � (KT , AT , 1) for
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t > T , is a plan from (K, A), given the belief fEn9
t g10 . Note that, for 0 < t < T ÿ 1,

~C n9
t�1 ! Ct�1 as n9!1. Thus, we can ®nd N > N2 such that, for n9 > N, we haveXTÿ1

0

ä tw(~C n9
t�1)ÿ

XTÿ1

0

ä tw(Ct�1) > ÿ(å=5):

This in turn implies that, for n9 > N,X1
0

ä tw(~C n9
t�1) >

X1
0

ä tw(Ct�1)ÿ 2(å=5): (��)

Combining (�), (�) and (��) yields for n9 > NX1
0

ä tw(~C n9
t�1) >

X1
0

ä tw(C n9
t�1)� (å=5),

which contradicts the fact that fK n9
t , An9

t , hn9
t�1g10 is the optimal plan from (K, A),

given the belief fEn9
t g10 . Thus, continuity of ø is ensured.

Let ð be the (projection) map that associates with each plan fK9t, A9t, h9t�1g10 from
(K, A), given the belief fE9tg10 in F, the sequence fA9tg10 . Then ð is a continuous
map. Let Ë be the composite map ð � ø. Then Ë is continuous on F. Thus, applying
the Tychonoff ®xed-point theorem (see Smart 1974, p. 15), there is fÊtg10 in F,
such that Ë(fÊtg10 ) � fÊtg10 . Let fK̂ t, Ât, ĥ t�1g10 � ø(fÊ tg10 ). Then fÂtg10 �
ð � ø(fÊ tg10 ) � Ë(fÊtg10 ) � fÊtg10 . Thus, fK̂ t, Ât, ĥ t�1g10 is an equilibrium pro-
gramme from (K, A). j

Proof of Proposition 2

This is by now a fairly straightforward exercise. A detailed argument can be written
down following Mitra and Sihag (1993). j

Proof of Proposition 3

If the proposition were not true, there would exist an equilibrium fK t, At, ht�1g from
some (K, A)� 0 and T > 0, such that At�1 � At � A for t > T. In this case, one can
use the ä-productivity condition (D) and apply the arguments used in Mitra and Sihag
(1993) to conclude that the agent could improve his discounted sum of welfares by
increasing his human capital to (A� å) for t . T , for å. 0 but suf®ciently small. j

Proof of Proposition 4

As in the case of Proposition 2, this is a straightforward exercise. The argument is
analogous to that spelt out in detail in Mitra and Sihag (1993). j

Proof of Proposition 5

If fK t, At, ht�1g10 is an interior equilibrium from (K, A)� 0, then we can use
Propositions 2 and 4 to obtain, for t > 1,
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(1=ä)(Ct�1=Ct)
ó � (1� âA

ã
t K

âÿ1
t h

1ÿâ
t�1 A

1ÿâ
t ), (A1)

(1=ä)(Ct�1=Ct)
ó � A

ã
t K

â
t (1=õ)1ÿâ(1ÿ â)[(1� õ)At ÿ At�1]ÿâ(1� õ)

A
ã
tÿ1 K

â
tÿ1(1=õ)1ÿâ(1ÿ â)[(1� õ)Atÿ1 ÿ At]ÿâ

: (A2)

Noting that A
ã
t K

âÿ1
t h

1ÿâ
t�1 A

1ÿâ
t � A

ì(1ÿâ)
t h

1ÿâ
t�1 =K

1ÿâ
t , and using the notation xt � A

ì
t ,

(A1) can be simpli®ed to read

(1=ä)(Ct�1=Ct)
ó � [1� â(ht�1xt=K t)

1ÿâ]:

Note that

A
ã
t K

â
t [(1� õ)At ÿ At�1]ÿâ � A

ã
t (õAt)

ÿâK
â
t f[(1� õ)At ÿ At�1]=õAtgÿâ

� õÿâK
â
t =h

â
t�1 A

âÿã
t :

Furthermore,

ìâÿ [ã=(1ÿ â)] � [â(1ÿ â� ã)ÿ ã]=(1ÿ â)

� [â(1ÿ â)ÿ ã(1ÿ â)]=(1ÿ â) � (âÿ ã):

So we can write A
âÿã
t � A

ìâ
t =A

ã=(1ÿâ)
t . Using this in (A2), we obtain

(1=ä)(Ct�1=Ct)
ó � (1� õ)

(htxtÿ1=K tÿ1)â

(ht�1xt=K t)â
(At=Atÿ1)ã=(1ÿâ):

Noting that ìÿ 1 � [(1ÿ â� ã)=(1ÿ â)]ÿ 1 � ã=(1ÿ â), we obtain (ii) of Proposi-
tion 5. j

Proof of Theorem 2

We ®rst note that fK t, At, ht�1g10 as de®ned is a plan from (K, A) given the beliefs
fAtg10 .

Note that assumption (C) ensures that g , (1� õ) (and G , (1� õ)ì), while
assumption (D) ensures that g . 1 (and G . 1). Then, ht�1 � h � 1ÿ [(g ÿ 1)=õ]
satis®es 0 , h , 1. Thus, it remains to check that K t�1 < F(K t, At ht�1, At)� K t for
t > 0. To verify this, we write

F(K t, At ht�1, At)� Kt � K t[1� (ht�1 A
ì
t =K t)

1ÿâ]

� K t[1� (hAì=K)1ÿâ] . K t[1� âf[(1=ä)Gó ÿ 1]=âg]

� K t[G
ó =ä] � GK t[G

ó =äG] � GK t=äG1ÿó . GK t � K t�1,

by using assumption (C).
Next, it is easy to verify that fK t, At, ht�1g10 is a steady-state plan from (K, A)

given the beliefs fAtg10 . By de®nition At � Ag t and K t � KGt. Also for t > 1,
Ct�1 � A

ã
t h

1ÿâ
t�1 A

1ÿâ
t K

â
t � Kt ÿ Kt�1 � Kt[1� (hAì=K)1ÿâ]ÿ GKt � GKtÿ1([1� (hAì=

K)1ÿâ]ÿ G2 K tÿ1 � GCt. De®ne C � K[1� (hAì=K)1ÿâ]ÿ GK. Then Ct�1 � CGt

for t > 0.
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We now verify that fK t, At, ht�1g10 satis®es the Ramsey±Euler equations. For
t > 1, we have

(1=ä)(Ct�1=Ct)
ó � Gó =ä

and

[1� â(ht�1 A
ì
t =K t)

1ÿâ] � Gó =ä,

so that the ®rst Ramsey±Euler equation is satis®ed. Also for t > 1,

(1� õ)
(ht A

ì
tÿ1=K tÿ1)â

(ht�1 A
ì
t =K t)â

(At=Atÿ1)ìÿ1

� (1� õ)gìÿ1

� [ä(1� õ)]gìÿ1=ä � [ä(1� õ)]1�f(ìÿ1)=[1ÿì(1ÿó )]g=ä

� [ä(1� õ)]fìó =[1ÿì(1ÿó )]g=ä � Gó =ä,

so that the second Ramsey±Euler equation is satis®ed.
De®ne for t > 0, pt�1 � ä tw9(Ct�1), qt�1 � pt�1[A

ìÿ1
t (1ÿ â)=õ(ht�1 A

ì
t =K t)

â],
p0 � p1[1� â(h1Aì=K)1ÿâ], q0 � q1(1� õ). Then, by the ®rst Ramsey±Euler
equation,

pt�1[1� â(ht�1 A
ì
t =K t)

1ÿâ] � pt for t > 0:

And, by the second Ramsey±Euler equation,

qt�1(1� õ) � qt for t > 0:

Let fK9t, A9t, h9t�1g10 be any plan from (K, A) given the beliefs fAtg10 . Then for
t > 0, we have

ä t[w(C9t�1)ÿ w(Ct�1)] < ä tw9(Ct�1)(C9t�1 ÿ Ct�1)

� pt�1(C9t�1 ÿ Ct�1)

� pt�1 A
ã
t [K

9â
t (h9t�1 A9t)

1ÿâ ÿ K
â
t (ht�1 At)

1ÿâ]

� pt�1(K9t ÿ K t)ÿ pt�1(K9t�1 ÿ K t�1)

< pt�1 1� A
ã
t â

ht�1 At

K t

� �1ÿâ
" #

(K9t ÿ K t)

� pt�1 A
ã
t (1ÿ â)

ht�1 At

K t

� �ÿâ
(h9t�1 A9t ÿ ht�1 At)

ÿ pt�1(K9t�1 ÿ K t�1)

� pt(K9t ÿ K t)ÿ pt�1(K9t�1 ÿ K t�1)

� pt�1[A
ìÿ1
t (1ÿ â)=õ(ht�1 A

ì
t =K t)

â]
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3 [(1� õ)(A9t ÿ At)ÿ (A9t�1 ÿ At�1)]

� pt(K9t ÿ K t)ÿ pt�1(K9t�1 ÿ K t�1)

� qt(A9t ÿ At)ÿ qt�1(A9t�1 ÿ At�1):

Thus, summing on this inequality from t � 0 to t � T , we getXT

t�0

ä t[w(C9t�1)ÿ w(Ct�1)] < pT�1(KT�1 ÿ K9T�1)� qT�1(AT�1 ÿ A9T�1)

< pT�1 KT�1 � qT�1 AT�1:

Notice that pt � pt�1(Gó =ä) � pt�1G=äG1ÿó . Thus, pt�1 K t�1 � pt K t(äG1ÿó ),
and pt K t ! 0 as t!1 (since äG1ÿó , 1). Similarly, qt � qt�1(1� õ), and so
qt�1 At�1 � qt At[g=(1� õ)]. Thus, qt At ! 0 as t!1 (since g , (1� õ)). This
implies that X1

0

ä tw(C9t�1) <
X1

0

ä tw(Ct�1),

and so fK t, At, ht�1g10 is an optimal plan from (K, A), given the belief fAtg10 . This
establishes that fK t, At, ht�1g10 is an equilibrium programme from (K, A). Hence,
fK t, At, ht�1g10 is an equilibrium steady state programme from (K, A). j

Proof of Proposition 7

Using Proposition 5, and de®ning

zt � (ht�1xt=K t) for t > 0,

we obtain the equation

(1� âz
1ÿâ
t ) � (ztÿ1=zt)

â(At=Atÿ1)ìÿ1(1� õ):

This leads to the basic difference equation,

z
â
t � âzt � z

â
tÿ1(At=Atÿ1)ìÿ1(1� õ): (A3)

In order to study (A3), we de®ne a function f (z) � M(zâ � âz)1=â for z > 0, where
M . 0. Then f is increasing and continuous in z, and the range of f is R�. Thus,
ö � f ÿ1 exists and is an increasing continuous function from R� to R�. We can
infer a number of useful properties of ö from those of f. Since f (0) � 0, we have
ö(0) � 0. Also, f is continuously differentiable on R��, with f 9(z) �
M(1=â)[zâ � âz](1=â)ÿ1[âzâÿ1 � â] � M[1� âz1ÿâ](1ÿâ)=â [1� z1ÿâ] . 0, so that ö is
continuously differentiable on R�� and ö9(y) � 1= f 9(ö(y)) . 0 for all y . 0.
Furthermore, as y increases, ö(y) increases and so f 9(ö(y)) increases and ö9(y)
decreases. Thus, ö is strictly concave on R��. As y!1, ö(y)!1 and so
f 9(ö(y))!1, and ö9(y)! 0. As y! 0, ö(y)! 0 and so f 9(ö(y))! M and
ö9(y)! (1=M).

We now study the dynamic behaviour of fztg10 as governed by (A3), by looking at
two related difference equations:

± 102 ±
# Japanese Economic Association 1998.

The Japanese Economic Review



îât � âî t � îâtÿ1(1� õ), î0 � z0, (A4)

æât � âæ t � æâtÿ1(1� õ)ì, æ0 � z0: (A5)

Notice that (A4) translates to the equation f (î t) � î tÿ1 when M � [1=(1� õ)1=â];
similarly, (A5) translates to the equation f (æ t) � æ tÿ1 when M � [1=(1� õ)ì=â]. Let us
denote f ÿ1 in the ®rst case by ö and in the second case by ö.

Given that 1 < (At=Atÿ1) < (1� õ) for all t > 1, we clearly have

î t < zt < æ t for t > 0: (A6)

Thus, we can infer the behaviour of zt by examining those of î t and æ t. The latter are
governed by the equations (A4) and (A5), that is, by the equations

î t � ö(î tÿ1), î0 � z0, (A7)

æ t � ö(æ tÿ1), æ0 � z0: (A8)

Since ö9(y) and ö9(y) both approach numbers exceeding 1 (M , 1 in both cases) as
y! 0, the solutions of (A7) and (A8), given any z0 . 0, are easy to describe. In each
case, the solution approaches the unique non-zero ®xed point of the function. Denoting
by î� and æ� these ®xed points of ö and ö respectively, we have î�, æ�. Pick any
0 , å, î� and de®ne z � î� ÿ å, z � æ� � å, I � [z, z]. Then, if zt 2 I for some t,
zt�1 2 I also. Further, given any z0 . 0, zt 2 I for some t > 0. This proves the
proposition. j

Proof of Lemma 2

Suppose on the contrary that (Ct=Yt)! 1 along a subsequence of periods. Then
(K t=Yt)! 0 along that subsequence, and so (Ct=K t)!1 along the subsequence also.

By Proposition 7, for all t large, zt 2 I , and so by the ®rst Ramsey±Euler equation

(Ct�1=Ct) � ä1=ó [1� âz
1ÿâ
t ]1=ó

is bounded below by a positive number. Thus, (Ct�1=K t) � (Ct�1=Ct)(Ct=K t) must go
to in®nity along the subsequence also. However,

(Ct�1=K t) � [1� z
1ÿâ
t ]ÿ (K t�1=K t) < [1� z

1ÿâ
t ],

so that (Ct�1=K t) is bounded above, a contradiction.

Proof of Proposition 8

We have yt � (xt=K t) � (zt=ht�1) > zt for t > 0. By Proposition 7, lim inf t!1zt . 0,
and so lim inf t!1 yt . 0.

Since yt � (zt=ht�1) for t > 0 and zt is bounded above (by Proposition 7), if
lim sup t!1 yt � 1, then lim inf t!1ht�1 � 0.

We now show that a switch (suf®ciently far in the future) to a regime of no
schooling for the rest of the future is an improvement for this agent's discounted sum
of welfares.

Let fEtg10 be any belief satisfying

Et < Et�1 < (1� õ)Et for t > 0: (A9)
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De®ne, for (K , A) > 0 and any belief fEtg10 satisfying (A9),

W (K, A, fEtg10 ) � Max
X1

0

ä tw(Ct�1)

subject to

for t > 0

Ct�1 � F(K t, At ht�1, Et)� K t ÿ K t�1

At�1 � At � õ(1ÿ ht�1)At

0 < ht�1 < 1, Ct�1 > 0

8>>><>>>:
and (K0, A0) � (K, A):

Using the method employed to establish Proposition 1, W is well de®ned. Also, given
fEtg10 , it is easy to check (given the forms of the welfare and production functions)
that W is homogeneous of degree (1ÿ ó ) in (K , A).

Now de®ne a subsequence of time-periods as follows: t1 � 0; for s > 1, ts�1 �
minft: yt . yts

g. Since lim sup t!1 yt � 1, this is a well-de®ned subsequence. Also,
for each s > 1, yts�1

> yt for all 0 < t < ts�1. Thus, yts
!1 as s!1. Further-

more, by construction yts
> ytsÿ1 for all s. Thus, (K ts

=K tsÿ1) < (Ats
=Atsÿ1)ì <

(1� õ)ì for all s.
Let T be suf®ciently large so that, for t > T , zt 2 I . (This is assured by Proposition

7.) Now, for any t . T, xt � A
ì
t < (1� õ)ìA

ì
tÿ1 � èxtÿ1.

In view of Lemma 2, there is 0 ,á, 1, such that (Ct=Yt) < (1ÿ á) for t > 1.
Thus, (K t=K tÿ1) � (Yt ÿ Ct)=K tÿ1 > [Yt ÿ (1ÿ á)Yt]=K tÿ1 � á(Yt=K tÿ1) � á[1 �
z

1ÿâ
tÿ1 ] > á[1� z1ÿâ]. Thus, (xtÿ1=K tÿ1) > (xt=è)[á(1� z1ÿâ)=K t]. Thus, ytsÿ1 ! 1

as s!1, since yts
!1 as s!1. Furthermore, hts

! 0 as s!1 by Proposi-
tion 7.

Denote min[z1ÿâ=2, 1=2] by m. Choose s large enough so that

(m=h
1ÿâ
ts

)1ÿó . 1=(1ÿ äè1ÿó ): (A10)

Using the de®nition of W, we obtain

W [K tsÿ1, Atsÿ1, fAtsÿ1�ng10 ] � w(Cts
)� äW [K ts

, Ats
, fAts�ng10 ]

< w(Cts
)� äW [K ts

, Ats
, f(1� õ)Atsÿ1�ng10 ]

< w(Cts
)� äW [K ts

, (1� õ)ìÿ1 Ats
, fAtsÿ1�ng10 ]

< w(Cts
)� äW [(1� õ)ìK tsÿ1, (1� õ)ìAtsÿ1, fAtsÿ1�ng10 ]

� w(Cts
)� ä[(1� õ)ì]1ÿó W [K tsÿ1, Atsÿ1, (Atsÿ1�n)10 ]:

Thus, W [K tsÿ1, Atsÿ1, fAtsÿ1�ng10 ] < w(Cts
)=(1ÿ äè1ÿó ).

We now show that, by using all the labour in period ts in the production of physical
goods and by consuming all of the output, a higher discounted sum of welfares can be
obtained. Denote period ts by ô, and the new consumption by C9ô. Then
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C9ô > F(Kôÿ1, Aôÿ1 hô, Aôÿ1)=h1ÿâ
ô

>
z

1ÿâ
ôÿ1 Kôÿ1

2h1ÿâ
ô

� F(Kôÿ1, Aôÿ1 hô, Aôÿ1)

2h1ÿâ
ô

> (m=h1ÿâ
ô )[Kôÿ1 � F(Kôÿ1, Aôÿ1 hô, Aôÿ1)]

> (mCô=h1ÿâ
ô ):

Thus, w(C9ô) > (m=h1ÿâ
ô )1ÿó C1ÿó

ô =(1ÿ ó ) . w(Cô)=(1ÿ äè1ÿó ), by using (A10). This
contradicts the de®nition of W, and establishes the result. j

Proof of Lemma 3

Using condition (C), we have ä[(1� õ)ì]1ÿó , 1. Thus, we can ®nd á. 1, such that
ë9 � ä[(1� õ)ì]1ÿó á, 1. Denote [ë9]1=ó by ë. Using Proposition 7, we can ®nd T
such that, for t > T, zt 2 I and, further, (1� âz

1ÿâ
t ) < á(1� õ)ì. Thus, using the ®rst

Ramsey±Euler equation for t > T,

(Ct�1=Ct) � ä1=ó (1� âz
1ÿâ
t )(1=ó )ÿ1(1� âz

1ÿâ
t )

< ä1=ó á1=ó [(1� õ)ì](1=ó )ÿ1[1� âz
1ÿâ
t ]

� fä[(1� õ)ì]1ÿó ág1=ó (1� âz
1ÿâ
t )

� ë(1� âz
1ÿâ
t ) ,á(1� õ)ì:

Now, if (Ct=Kt)! 0 along a subsequence of periods, we can pick ô. T along
this subsequence so that (Cô=Kô) < (1ÿ â)z1ÿâ=á(1� õ)ì. Then (Cô�1=Kô) <
(Cô�1=Cô)(Cô=Kô) < (1ÿ â)z1ÿâ.

Now, (Kô�1=Kô) > (1� z1ÿâ
ô )ÿ (Cô�1=Kô) > (1� âz1ÿâ

ô )� (1ÿ â)z1ÿâ
ô ÿ (Cô�1=Kô)

> (1� âz1ÿâ
ô )� (1ÿ â)z1ÿâ ÿ (Cô�1=Kô) > (1� âz1ÿâ

ô ). Thus, (Cô�1=Kô�1) � (Cô�1=
Cô)(Cô=Kô)=(Kô�1=Kô) < ë(Cô=Kô). Thus, this step can be repeated to get

(Cô�s=Kô�s) < ës(Cô=Kô) for s > 1:

This implies
P1

t�1(Ct=K t) ,1. j

Proof of Proposition 9

We have v t � (Ct�1=K t) � (Ct�1=Yt�1)(Yt�1=K t) < (1� z
1ÿâ
t ), which is bounded

above by Proposition 7. Thus,

lim sup
t!1

v t ,1

To establish that lim inf t!1v t . 0, suppose on the contrary that (Ct�1=Kt)! 0 along a
subsequence of periods. We can use Proposition 7 to ®nd T such that, for t > T, zt 2 I .
And for t > T, using the ®rst Ramsey±Euler equation,

(Ct�1=Ct) � ä1=ó (1� âz
1ÿâ
t )1=ó > ä1=ó (1� âz1ÿâ)1=ó :
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Thus (Ct=K t) � (Ct�1=K t)=(Ct�1=Ct)! 0 along the given subsequence of periods.
Thus, by Lemma 3, X1

t�1

(Ct=K t) ,1:

Then, following the proof of lemma 2 in Mitra (1979, p. 89), we can ®nd a plan
fK9t, At, ht�1g10 from (K, A), given the belief fAtg10 such that C9t > Ct for all t > 1
and C9t . Ct for some t. This contradicts the fact that fKt, At, ht�1g10 is an
equilibrium programme from (K, A).

Proof of Theorem 3

De®ne g K � lim inf t!1(K t)
1= t, gA � lim inf t!1(At)

1= t and gC � lim inf t!1(Ct)
1= t.

Then, using Proposition 8, we get gK � g
ì
A; and by using Proposition 9, gC � gK .

Using the second Ramsey±Euler equation, we obtain

(CT�1=C1)ó � [ä(1� õ)]T (z0=zT )â(AT=A0)ìÿ1:

Then, taking lim inf on both sides of the equation (and using Proposition 7),

góC � ä(1� õ)g
ìÿ1
A :

Using gK � gC � g
ì
A, we have

g
ìó
A � ä(1� õ)g

ìÿ1
A

Thus, gA � [ä(1� õ)]1=[1ÿì(1ÿó )] � g, the growth factor of human capital for the
equilibrium steady state. And gK � gC � g

ì
A � gì � G, the growth factor of physical

capital (and consumption) for the equilibrium steady state.
Repeating the above steps by de®ning g K � lim sup t!1(K t)

1= t, g A �
lim sup t!1(At)

1= t, gC � lim sup t!1(Ct)
1= t, we again get g A � g and g K �

gC � G. Thus, lim t!1(At)
1= t exists and equals g; similarly, lim t!1(K t)

1= t and
lim t!1(Ct)

1= t exist and equal G.

Final version accepted October 28, 1996.
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